IMAGING MASS SPECTROMETRY REVEALED THE PRODUCTION OF LYSO-PHOSPHATIDYLCHOLINE IN THE INJURED ISCHEMIC RAT BRAIN

S. KOIZUMI, S. YAMAMOTO, T. HAYASAKA, Y. KONISHI, M. YAMAGUCHI-O KADA, N. GOTO-INOUÉ, Y. SUGIURA, M. SETOU* AND H. NAMBA*

*Department of Neurosurgery, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
Photon Medical Research Center, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
Department of Molecular Anatomy, Hamamatsu University School of Medicine, 1-20-1 Handayama, Higashi-ku, Hamamatsu, Shizuoka 431-3192, Japan
Department of Bioscience and Biotechnology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

Abstract—To develop an effective neuroprotective strategy against ischemic injury, it is important to identify the key molecules involved in the progression of injury. Direct molecular analysis of tissue using mass spectrometry (MS) is a subject of much interest in the field of metabolomics. Most notably, imaging mass spectrometry (IMS) allows visualization of molecular distributions on the tissue surface. To understand lipid dynamics during ischemic injury, we performed IMS analysis on rat brain tissue sections with focal cerebral ischemia. Sprague–Dawley rats were sacrificed at 24 h after middle cerebral artery occlusion, and brain sections were prepared. IMS analyses were conducted using matrix-assisted laser desorption/ionization time-of-flight mass spectrometer (MALDI-TOF MS) in positive ion mode. To determine the molecular structures, the detected ions were subjected to collision-induced dissociation (CID). The intensity counts of the ionsignals of m/z 798.5 and m/z 760.5 are revealed to be a phosphatidylcholine, PC (16:0/18:1); m/z 496.3, identified as a lyso-phosphatidylcholine (LPC). In IMS analyses, changes of PC (16:0/18:1) and LPC (16:0) are observed beyond the border of the injured area. Together with previous reports—that PCs are hydrolyzed by phospholipase A2 (PLA2) and produce LPCs—our present results suggest that LPC (16:0) is generated during the injury process after cerebral ischemia, presumably via PLA2 activation, and that PC (16:0/18:1) is one of its precursor molecules. © 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Key words: brain imaging, focal ischemia, imaging mass spectrometry, lyso-phosphatidylcholine.

The progression of ischemic injury has been thought to involve many molecular pathways that play roles in the death of neurons. The molecular dynamics following ischemia is yet to be elucidated. Lipids play fundamental roles in the maintenance of cell structure and in mediating cell signaling. Considering that the brain is one of the most lipid-rich organs, with accounting for approximately 50% of dry weight (Trim et al., 2008), it has been suggested that they play fundamental roles in various brain functions. Nonetheless, lipid distributions in the brain during the progression of ischemia remain largely unknown, due to the limitations of imaging methods used to visualize the tissue distributions of lipids.

Direct molecular analysis of biological tissue using mass spectrometry (MS) provides valuable information (Sugiura and Setou, 2010). Imaging mass spectrometry (IMS) of biological tissues, using matrix-assisted laser desorption/ionization (MALDI), is an especially powerful tool for visualizing the distributions of various molecules (Harada et al., 2009), and is thus applicable to the imaging of bio-molecules (Stoeckli et al., 2001; Kimura et al., 2009), biomarker discovery (Morita et al., 2010; Zaima et al., 2009) and drug delivery (Reyzer et al., 2003) in tissues. IMS can separate multiple lipids according their mass-to-charge ratios (m/z), and visualize the tissue distribution of each molecule (Hayasaka et al., 2008; Sugiura and Setou, 2010). Furthermore, the use of tandem MS (MSn) allows identification of the structures of the visualized molecules (Hayasaka et al., 2009).

In this study, we used IMS to visualize lipid distributions in rat brain tissues during focal cerebral ischemia. Our present results reveal dynamic conversion from phosphatidylcholine (PC) to lyso-phosphatidylcholine (LPC) in brain areas with ischemic injury.

EXPERIMENTAL PROCEDURES

Animals and surgery
All experiments were performed according to the rules of animal experimentation and the guide for the care and use of laboratory animals of Hamamatsu University School of Medicine. Eight weeks old Sprague–Dawley rats (290–310 g) purchased from 0306-4522/10 $ - see front matter © 2010 IBRO. Published by Elsevier Ltd. All rights reserved. doi:10.1016/j.neuroscience.2010.03.056
SLC Inc. (Hamamatsu, Japan) were fed lab chow ad libitum and maintained in a thermally controlled (27 °C), 12 h light/dark cycle environment. The rats were anesthetized with 1.3%–1.8% isoflurane by nasopharyngeal insufflations under spontaneous respiration (Abbott Japan Co., Ltd., Tokyo, Japan) (Yamaski et al., 2003). Temperature was maintained at 37 °C throughout the procedure using rectal temperature regulating heating pad. The left middle cerebral artery (MCA) was exposed and cauterized distal to the lenticulostriatal branches by a modification of the method of Tamura et al. (Tamura et al., 1981; Yamamoto et al., 1988).

Preparation of tissue samples

The rats were sacrificed at 24 h after MCA occlusion (MCAO) under deep anesthesia and then decapitated. The brains were then dissected. Immediately after dissection, the rat brains were flash frozen in liquid hexane and stored at −20 °C. Tissues were sliced at a 7 μm thickness with a cryostat (CM1950; Leica, Wetzler, Germany), placed directly onto MALDI plate inserts, and stored at −20 °C until matrix application and subsequent IMS analysis. The adjacent brain section, also 20 μm in thickness, was used for counter staining with Hematoxylin-and-Eosin (HE). The MALDI matrix 2,5-dihydroxybenzoic acid (DHB) was purchased from BrukerDaltonics (Leipzig, Germany). Bradykinin and angiotensin-II were obtained from Sigma-Aldrich, Japan (Tokyo, Japan) and used as calibration standards. Trifluoroacetic acid (TFA) was purchased from Kanto Chemical Company (Tokyo, Japan). Methanol was purchased from Wako Pure Chemical Industries (Osaka, Japan).

IMS analyses and identification of phospholipids

In total, 0.5 ml of DHB matrix solution (30 mg/mL in 70% methanol/0.1% TFA) were sprayed onto the tissue as previously described (Schwartz et al., 2003; Shimma et al., 2008). After drying, MALDI plate inserts were installed in the ionization chamber. MS and IMS analyses were acquired using a quadrupole time-of-flight (TOF) tandem mass spectrometer (QSTAR XL, Applied Biosystems/MDS Sciex, Thornhill, ON, Canada) in positive ion mode. The mass spectra were calibrated externally using a standard peptide calibration mixture containing a bradykinin peptide fragment (amino acid residues 1–7) and a human angiotensin-II peptide fragment (amino acid residues 18–39).

For IMS, the raster scan was performed automatically. The laser was used at energy of 40% (4.0 μJ) and a repetition rate of 100 Hz. Mass spectra were acquired with the laser firing for approximately 2.55 s per spot. The interval of data points was 200 μm, yielding a total of approximately 4500 data points. Mass spectrometric data were averaged at each analytical point, such as contralateral hemisphere and ipsilateral hemisphere, whereas in the ipsilateral hemisphere, tissue degeneration around the analytical point is apparent (Fig. 1a, b). Signals at m/z 798.5, are predominantly detected in normal brain areas as reported previously. In the ischemic brain area, the ion signal of m/z 798.5 is substantially reduced (Fig. 1b). In contrast, there were several ion signals in the lower mass range. For example, Signals at m/z 496.3 (Fig. 1b) was clearly increased in the ischemic area.

Structure determinations of PC and LPC by MS/MS analyses

MS/MS analyses were performed to determine the structure of peaks at m/z 798.5 and m/z 496.3 (Fig. 2). From the precursor ion at m/z 798.5, the product ions at m/z 739.5, m/z 615.4, and m/z 577.5 were detected (Fig. 2a). The difference between the mass values represents neutral losses (NL) corresponding to 59, 124, and 38 Daltons (Da). These NLs of 59 and 124 Da are known to represent, respectively, trimethylamine [N(CH 3) 3], the cyclophosphane ring [(CH 3) 2PO] 2, and the cyclophosphane ring [(CH 3) 2PO] 2, all of which are the parts of the PC species. The NL of 38 Da corresponds to the replacement of adduct ion to PC from potassium (K) to proton (H). These NLs have been shown to be detectable by MS/MS analysis of potassium-adducted PC species (Hsu and Turk, 2003; Pulfer and Murphy, 2003). The product-ion spectrum even indicated peaks at m/z 184.1 and m/z 163.0. These peaks correspond to the headgroup (CH 3) 2N(CH 3) 2PO 2H trimethylamine and the cyclophosphane ring of PC and [cyclophosphane ring+K] + from the headgroup, respectively. The database search of the LIPID MAPS as well as previous studies (Hsu et al., 1998; Hsu and Turk, 2003; Pulfer and Murphy, 2003) have suggested that the ion at m/z 798.5 is [PC (34:1)+K] + The NL of fatty acids from alkali-metal adducted PC species has reportedly been identified by electrospray ionization-MS/MS analysis (Jackson et al., 2007). MS/MS analyses using our IMS system were able to detect the product ion at m/z 542.2 that represents the NL of the fatty acid (16:0) from the precursor ion of m/z 798.5. Therefore,
the ion at \(m/z \) 798.5 can be identified in detail as potassium-adducted PC (16:0/18:1). Similarly, the ion at \(m/z \) 760.5 can be identified in detail as proton-adducted PC (16:0/18:1) (Data not shown). And, from the precursor ion at \(m/z \) 496.3, the product ions at \(m/z \) 184.1 and \(m/z \) 313.3 were detected (Fig. 2b). An NL of 183 Da from the precursor ion corresponds to the headgroup. So, the fragment peaks at \(m/z \) 184.1 and \(m/z \) 313.3 correspond to \([\text{PC headgroup}/\text{H}11001\text{H}]^-\) and an NL of 183 Da from a precursor peak, respectively. The product-ion spectrum even indicated peaks at \(m/z \) 104.1 and \(m/z \) 125.0.

Fig. 1. Direct mass analysis of rat brain tissue after MCAO. Mass spectra obtained from a rat ischemic brain section using a quadrupole-TOF tandem mass spectrometer with QSTAR XL in positive ion mode. HE staining of the adjacent section is shown in the insets to indicate the injured area and analytical points (blue points). Data from the normal cerebral area (a) and the focal cerebral ischemic area (b) are shown in the range of 400 to 800. Numbers above ion peaks indicate their \(m/z \) values. Cp, caudate putamen; Ctx, cerebral cortex; HP, hippocampus.

Fig. 2. MS/MS analyses of ions responsive to brain ischemia. The precursor ions at \(m/z \) 798.5 and \(m/z \) 496.3 were subjected to MS/MS analysis. Spectra of product ions (top) and the determined structures (bottom) are shown. (a) From product ions of \(m/z \) 798.5, NLs corresponding to trimethylamine \([\text{N(CH}_3)_3, 59 \text{ Da}]\), the cyclophosphane ring \((\text{CH}_2)_n\text{PO}_4\text{H}, 124 \text{ Da})\) and the replacement of adduct ion from potassium to proton \((\text{K}, 39 \text{ Da}; \text{H}, 1 \text{ Da})\) were observed. The product ion at \(m/z \) 542.2 corresponding to an NL of a fatty acid (16:0) was also detected. (b) From product ions of \(m/z \) 496.3, an NL corresponding to the headgroup \((\text{CH}_3)_3\text{N(CH}_2)_2\text{PO}_4\text{H})\) was observed. From a subsequent database search, ions at \(m/z \) 798.5 and 496.3 were identified as \([\text{PC (16:0/18:1)}/\text{H}11001\text{K}]^-\) and \([\text{LPC (16:0)}/\text{H}11001\text{H}]^-\), respectively. For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.
These peaks correspond to [(CH₃)₃N(CH₂)₂O+H]⁺ and [cyclophosphane ring+H]⁺ from the headgroup, respectively. From the results of the database search, we identified the ion at m/z 496.3 as proton-adducted LPC (16:0).

Amounts of PC (16:0/18:1) and LPC (16:0) altered in the ischemic area

To quantify the ion signals, we measured ion intensities at analytical points within the ROI in five different rats. We observed the ion intensity of potassium-adducted PC (16:0/18:1) (m/z 798.5) to be relatively low in the focal ischemic area as compared with the control area (left columns in Fig. 3a). Similarly, the ion intensity of m/z 760.5 corresponding to the proton-adducted PC (16:0/18:1) was also lower in the ischemic area (right columns in Fig. 3a). In contrast, the ion intensity of proton-adducted LPC (16:0) (m/z 496.3) was higher in the ischemic area than in the control area (Fig. 3b).

Distribution analysis of PC (16:0/18:1) and LPC (16:0) in ischemic rat brain by IMS

Next, we visualized the distributions of ion signals in brain tissues. In the contralateral hemisphere at 24 h after MCAO, the ion intensities of PC (16:0/18:1) (m/z 798.5 and m/z 760.5) were abundantly detected throughout the cerebral cortex (Fig. 4a, b), as reported previously (Jackson et al., 2005, 2007). In contrast, these ions were exclusively distributed in areas of degeneration in the ipsilateral hemisphere (Fig. 4a, b). Remarkably, the ion distribution of m/z LPC (16:0) (m/z 496.3) was specifically restricted to the area of degeneration in which PC (16:0/18:1) was reduced (Fig. 4c). As a merged image (Fig. 4d), ion signals of PC (16:0/18:1) and LPC (16:0) are indicated by blue and red, respectively. We also collected the IMS data at 20 h after MCAO. At this time point, we detected only a slight LPC induction at a restricted area in the ipsilateral hemisphere (Fig. 4e, f).

We speculate that cells at the border of the injured area are undergoing degeneration. To examine the PC dynamics in these cells, the ion signals of PC (16:0/18:1) and LPC (16:0) were plotted across the border from the ischemic area to the normal area (Fig. 4g). The ion signals of PC (16:0/18:1) (m/z 789.5 and m/z 760.5) were gradually decreased until reach to a plateau in the control region whereas the signal of LPC (16:0) (m/z 496.3) was complementally decreased (Fig. 4g). The signal plot of HE staining revealed the border of the degenerative zone to be localized between 0.8 and 0.9 mm from the starting point. Signal changes of PC (16:0/18:1) and LPC (16:0) due to ischemia were observed at the border, and points even further from the ischemic border (i.e. 0.9–1.1 mm from the starting point) (Fig. 4g). These observations raise the possibility that amount of LPCs are increased not only in the ischemic core, but also in the ischemic penumbra area in which cells are undergoing degeneration.

DISCUSSION

In the present study, we analyzed ischemic rat brain sections using direct mass spectrometry, and found LPC (16:0) to be induced in the injured area following MCAO, whereas PC (16:0/18:1) was reduced complementally in the ischemic area. Previous studies have suggested that PC can be hydrolyzed by phospholipase A2 (PLA2) at the sn-2 position to generate LPC and free fatty acid (Steinbrecher and Pritchard, 1989). These observations raise the possibility that LPC (16:0) might be produced from PC (16:0/18:1) in the focal ischemic area. Consistently, it has reported that ischemic damage cause a Ca²⁺-dependent activation of PLA₂ via NMDA receptor stimulation (Lee et al., 2000), and mice lacking cytosolic PLA₂ is partially protected from the effect of MCAO (Bonventre et al., 1997). Furthermore, a remarkable induction of cytosolic PLA₂ was reported in the dorsal hippocampal cytosolic extracts after global forebrain ischemia (Clemens et al., 2007).
We detected only a slight induction of cytosolic PLA2 by Western blotting of cerebral hemisphere at 24 h after MCAO (data not shown). It might be possible that induction of cytosolic PLA2 occurs at a restricted area in our system, thus hard to detect by using lysates prepared from whole cerebral hemisphere. Alternatively, there might be some molecular mechanisms (e.g. reacylation rate to become PCs, Shindou and Shimizu, 2009), involved in the LPC induction in MCAO.

Apart from the mechanisms by which LPCs are induced in ischemia, the roles of LPCs in the progression of ischemic injury have not been elucidated. In our IMS, LPC (16:0) was detected in a restricted area at 20 h after MCAO and was distributed in larger ischemic area by 24 h (Fig. 4). In addition, the region surrounding this area showed induction of LPC at least in some extent. We speculate that LPCs are induced not only in the ischemic core, but also in the ischemic penumbra area. Our present observations raise the possibility that production of LPCs participates in the progression of brain injury in the setting of brain ischemia. In future, it will be important to compare IMS image with diffusion- and perfusion-weighted magnetic resonance imaging to compare the expansion of the injury and induction of molecules (Reith et al., 1995; Nagel et al., 2004).

Outside of the nervous system, LPCs are suggested to play important roles in atherosclerosis and inflammatory diseases by altering the functions of various cell-types, including endothelial cells (ECs), smooth muscle cells, monocytes, macrophages, and T-cells. LPCs also participate in disturbances of vascular tone (Miwa et al., 1997), promoting cytokine effects (Murugesan et al., 2003), regulation of adhesion and chemotraction (Thukkani et al., 2003), induction of apoptosis (Takahashi et al., 2002), induction of reactive oxygen species (Matsubara and Hasegawa, 2005) and reduction of nitric oxides (Deckert et al., 1998). Furthermore, LPC has been identified as a major phospholipid component of oxidized low-density lipoprotein (Ox-LDL) which is a key factor in arteriosclerosis development (Witztum and Steinberg, 1991; Matsumoto et al., 2007). Thus, LPC is regarded as a risk factor for vascular endothelial function damage, as is Ox-LDL. In myocardial tissues, LPCs accumulate in intra- and extracellular spaces via increments in PLA2 during ischemia, and play an important role in the development of ischemia-reperfusion injury (Watanabe and Okada, 2003). In similar ways, LPCs might also play roles in focal cerebral ischemic injury.

Upon PLA2 activation, PCs are converted to LPCs and fatty acids (Murakami et al., 1997). It could involves rapid release of free arachidonic acid (AA) (Busto et al., 1989) and the induction of eicosanoids from AA (Miettinen et al., 1997) which regulate neuronal degeneration (Gaudet and Levine, 1979; Iannotti et al., 1981; Bhakoo et al., 1984). In
addition, other molecular change should exist in earlier stage of ischemia progression. Although we are not able to
detect these bio-molecules in our current system, develop-
ment of IMS technique in near future could provide
further information.

Acknowledgments—This research is supported in part by Japan
Science and Technology Agency grants SENTAN, JST and Japan
Society for the Promotion of Science grants WAKATE-S to Mitsu-
toshi Setou.

REFERENCES
Bhakoo KK, Crockard HA, Lascelles PC, Aver SF (1984) Prostaglan-
din synthesis and oedema formation during reperfusion following
Bonventre JV, Huang Z, Taheri MR, O’Leary E, Li E, Moskowitz MA,
Sapirstein A (1997) Reduced fertility and postischaemic brain in-
jury in mice deficient in cytosolic phospholipase A2. Nature
390:622–625.
Busto R, Globus WD, Martinez E, Valdes I, Ginsberg MD
(1989) Effect of mild hypothermia on ischemia-induced release of
neurotransmitters and free fatty acids in rat brain. Stroke 20:
904–910.
Clemens JA, Stephenson DT, Smalstig EB, Roberts EF, Johnston
EM, Sharp JD, Little SP, Kramer RM (1996) Reactive glia express
cytosolic phospholipase A2 after transient global forebrain isch-
Deckert V, Brunet A, Lantoine F, Lizard G, Millanvay-Van Brussel E,
Monier S, Lagrost L, David-Dufilho M, Gambert P, Devynck MA
(1998) Inhibition by cholesterol oxides of NO release from human
vascular endothelial cells. Arterioscler Thromb Vasc Biol 18:
1060.
Gaudet RJ, Levine L (1979) Transient cerebral ischemia and brain
Harada T, Yuba-Kubo A, Sugiyama S, Nakashima H, Oishi K, Naito T,
Seto M (2008) Visualization of volatile substances in different organelles
with an atmospheric-pressure mass microscope. Anal
Organ-specific distributions of lysophosphatidylcholine and triacyl-
Hayasaka T, Goto-Inoue N, Sugiyama S, Nakashima H, Osish K,
ted laser desorption/ionization quadrupole ion trap time-of-flight
(MALDI-QIT-TOF)-based imaging mass spectrometry reveals a
layered distribution of phospholipid molecular species in the mouse
Hsu FF, Turk J (2003) Electrospray ionization/tandem quadrupole
mass spectrometric studies on phosphatidylcholines: the fragmenta-
Hsu FF, Bohrer A, Turk J (1998) Formation of 18:0 adducts of
glycerophosphocholine lipids facilitates their identification by elec-
trospray ionization tandem mass spectrometry. J Am Soc Mass
involved in experimental ischemic edema in gerbils? Stroke
distribution in brain tissue using MALDI-TOFMS. Anal Chem
77:4523–4527.
Jackson SN, Ugurov M, Egan T, Post JD, Langlais D, Albert Schultz J,
Woods AS (2007) MALDI-ion mobility-TOFMS imaging of lipids in

